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The problem of heat  transmission in mul t i - l aye r  walls is analyzed.  It is shown that the off ic ia l ly  recom-  
mended method requires improvement  and new design formulas are proposed. 

Building mater ia ls  are capi l lary-porous bodies containing moisture in the form of liquid, vapor, and, at sub-zero 
temperatures,  ice .  It has been shown [1, 5] that the problem of heat  transmission in buildings is closely related to ques- 
tions of heat  and mass transfer. Therefore, to find the heat  transmission through outside walls, i t  is necessary to solve the 
comple te  heat  and mass transfer equations: 

0 ui)  = - -  d i v j i  + I i ,  (1) 
0 z  

Ot 
c 7 = div (kA t) + riI ~ . (2) 

0x 

Here we shall neglect  heat  transfer due to fi l trat ion of vapor-gas mixture.  It has been shown [4] that this assumption is 
justified for Kf < 0.5.  In the posit ive temperature range t > 0*C the liquid source 12 (I 2 = - I  0 is conditioned by condensa- 

tion of vapor. According to Posnov's calculat ions,  under normal conditions the mass of moist  air in the capi l lar ies  is 10"5% 
of the mass of liquid corresponding to equil ibrium moisture content.  Then it is accurate  enough to make the specific 
mass content equal to the specific mass content  of l iquid (u = u~ .  From Eq. (1) we obtain 

( M,) 1 1 = d i v j i = - - d i v  ~ p D v P x 0 - - ~  , (3) 

where e is the resistance coeff icient  for internal  diffusion of vapor, and D the diffusion coeff ic ient  of vapor in air.  For a 
building mate r ia l  in the moist  state, the par t ia l  pressure of vapor (Pro) in the capi l lar ies  is equal to the saturation pressure 
Ps and is a function of temperature.  Then 

Ix = - -  ~9 D ~ OP~s V ~ t. (4) 
pM OT 

Assuming that the thermophysical  characterist ics depend very l i t t le  on the coordinates, we may  write (2) in the form 

O/ 02t 
= aeq%x'go " (5) 0 ,r 

where aeq is the equivalent  thermal  diffusivity: 

a eq=( k+r~D12 M1RT Ops ) l O T  c7 (6) 

It is shown in [4, 5] that (5) m a y  be used to ca lcu la te  the heat  transmission through outside walls, when aeq , calcu- 

lated from (6), is taken as a. In the presence of a considerable moisture gradient  over the thickness of the wall, i t  should 
be divided into layers, and the mean characterist ics of each  layer used, 

We shall employ (5) to analyze  heat  transmission through a mul t i - l aye r  wall .  Heat transmission through an outside 
wall is usually unsteady, In the first approximation we shall assume that the temperature  of the outside air (outside sur- 
face) varies according to a harmonic law, 

Mathemat ica l ly ,  the problem of an n- layer  wall is described by the following system of equations: 

Otl 02tl 
"0Z =aleq------", 0 <  x < Ix; Ox ~ 

�9 , �9 �9 �9 . ~ ~ . �9 . �9 �9 

a 2 & 
- -  ane q In_ l  < x < tn; 

O ~ a x  2 ' 

(7) 
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ti (% li) =/i+x (~, li); 
(S) 

ki+~'t'i Oliox - -  Oti+lOx ~=zi (i = 1 . . . .  2, , n -  1) 

with appropriate boundary and in i t ia l  conditions. In [6, 7] Eqs. (7) have been solved for a two- layer  wall, and in [8] for 
the n- layer  case. 

In this paper we shall examine  Eqs. (11) and (12) from [6], and (5), (6), and (7) from [8]. 

We shall write expressions for the temperatures and heat  fluxes in two- layer  and three- layer  systems. 

Two- layer  wall.  An outside layer of thickness l I is in perfect  thermal  contact  with a second layer of considerab!y 
greater thickness (i z-C> l~); we may assume l~ ~ ~o. The in i t ia l  temperature is constant (or equal to zero). Starting from 
t ime ~" : 0, the temperature of the outside surface changes according to an harmonic law, t(0, r )  = t m sin wr; t(~o, r ) :  tc.  
The solution of (7) has the form [6]: 

h(x ,  ~)--t~ = e x p ( - - ] / - o ~ / 2 a x  x) - ~ o ]  s in(o~ o~/2a 1 x--13+13x); 
tm (9) 

t2 (x, ~) - -  tc 
= exp [ - -  ]/o~/2a~ l~- -  Vo~/9_a2(x-/ t )]  X 

tm 

X 1A~0/--~'~ sin [a,~ - -  V - ~  ll - Vo~/2a---2 (x - ll) - I~]; 

Ax = 1 - -  2h exp [ - -  2 (ll x) ] f l~-E~]  cos 2 (11 - -  x)Vo~/2 ax + 

+ h ~ exp [-- 4 (11 - -  x) V-r 

ho = h~lx=o, 

(:to) 

where 

1 - -  h exp [ - - 2  (I1 -- x) V tol2al] cos 2 (11 -- x) V'~ol2al 
~ = arc cos A '/~ ; (11) 

x 

For the heat  fluxes we obtain 

ql (x, r ---- ( ] /21 cl 71r { 1 + 2h exp [(--2/1@ 2x) Vad2all  cos 2 ( / 1 -  x) M 

X 1/o~/2a~ + h ~ exp [(--4/1 + 4x) ]/'~/2-~d} { 1--2h exp ( - -  2ll • 

X V~/2a~) cos 2ll  V~-Tff~ + a  2 exp ( -  411 Vtol2al)}-a) ' / 'x  

x exp ( - -  ]/'o~/2al x) sin (to~ - -  ] f ~ / 2 ~  x - -  13 - -  [3, + 7:/4); (12) 

q2(x, ~) = Vx2c2 T2 to e x p [ - -  ] / -~- /~  t~ --  ]/o~/2a2 (x- - /1)} (1- -h)  X 

X { 1 - -2h  exp ( - -2/1  U ~ )  cos 211 W to/2a~ + h 2 exp (--4/~ X 

X V-ov2a~)]-v2 sin (m~ - ] /~ /2a111  - ]/'to/2a2 (x - / 1 )  - [~ + ~z/4). (13) 

Three-layer  wall. The temperature at the outside surface varies according to an harmonic law ti(0,1-) = to + 
+ t m cos tof, and heat transfer takes place at the inside surface according to Newtoffs law, X~(dtffdx) = -a( t3  - tc)lx=13. 
The temperature of the inside air remains constant. The initial temperature is taken as the temperature established in 
the wall when the temperature of the outside surface ts = ~0 + tin, and heat transfer at the inside surface is governed by 
Newton's law. The solution of (7) has the form [8]: 

t~ (x, ~) = h~x + tmA~ (x, ~) c o s  (~o~ - -  T + [hx); 

t2 (x, ~) = t2:~. +2K~t~A2 (x, o~) cos  (~,z - -  ~ + ~ ) ;  

t 3 (X, "c) = t3c x +4K~K2tmA~ (x, o~) cos  ( ~  - -  7 + [~3~). 

(14) 

(15) 

(16) 
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For the heat fluxes we have 

ql (x, ~) ~ Q~ --  tmA~ (x, V ,,) cos (o,: - v + ~ ,  + I~;) x~ c~ r~ .  a ;  
- Ax 

q, (x, "c) = Q~ - 2KltmA2 (x, ~) cos (~'~ - -  y + ~2~ + 1~2~) • 

where 

V A~ 

qa (x, ~) = Q3~ - -  4K1KdmA3 (x, ~) cos (~o~ --  -; + [~3~ + [Ba~) X 

3x 
X X3 c3 ~3to S~3~' 

A~(x, .,)= (AJAoY,; As(x. 

t3c~ = t0 + 

r _--_ (,%JAo)V.; 

R1 + R~ + R3~ (to ~ to)" Ro ~ l~ ls I_____1 l.s -- I~ ' + 

Rx xlk~; R ~  = (x - -  I~)/X~; R3x = (x - -  l~)/k 3 . 

A~ ( x . . . )  = (A,2~,~ 

2 2 Ao =K~+Ke+ {(1+ Bi*~) ch 2~+ + (1-- Bi .2) cos 2B+ + 

1 + - - ;  

(17) 

(18) 

(19) 

(20) 

+ V 2 B i  .2 (sh 2~+ + sin 2~+) + h~ [(1 + Bi .2) ch 2L-:1 + (1 --  Bi *~) cos 2B_ 1 --]- 

+ V2Bi*  (sh 20_ 1 "  + sin 2~_,)] + h2h~[(l+ Bi*~)ch 28_~ + 

+ ( l w  Bi*~)eos 2~_~ + [ / 2  Bi* (sh 2~_~ + sin 2~_~)] + 

+ h2 [(1+ Bi*~) eh 2g-3 + (1--Bi  .2) cos 2g_~ + 

+ ]/ffBi* (sh 2~-a -4-- sin 2B_3) ] + 2hlh~ [(1 + Bi .2) ch 2 (B3 + gl) cos 2~ + 

+ (I - -  Bi *~) ch 292 cos (~3 q- ~1) + ]/-2- Bi* (sh 2 (gs + ~1) cos 282 + 

+ eh 2~ sin 2(;3 + B1))] + 2hlh~ [(1 4- Bi *~) ch 2 (~3 -  ~1) cos 2B~ + 

+ (1-- Bi *~) eh 2~ cos (~3 ~ 81) + ] / 2  Bi* X 

X (sh 2 (~3 - -  B1) cos 292 + ch 2~ sin 2 (;3 -- ~1))] + 

Jr-2ha [(1+ Bi *~) ch 2 (g3 + g~)cos 2gl + (1--Bi  .2) eh 2~1 cos 2 (B3 + ~) + 

+ ]/-ff Bi* (sh 2 (g3 + ~) cos 2~1 + eh 281 sin 2 (~3 + g~))] + 

+ 2h~ [(1 + Bi *~) eh 2~s cos 2 (~ + Ba) + (1-- Bi*2) ch 2 (g~ + B~) cos 293 + 

+ ] / 3  Bi* (eh 2 (;3 + g~) sin 293 + sh 2;s cos 2 (~ + ~))] + 

-I- 2h~h~ [( 1 + Bi *~) ch 293 cos 2 (g~ - -  gl) + ( 1 -- Bi *~) ch 2 (8~ - -  g~)cos 2~3 + 

+ ]/ '3 Bi* (sh 2Bs cos 2 (g~ - -  B1) + eh 2 (g~ --  ~t) sin 2~3)] + 

+ 2h~ha [( 1+ Bi*~) eh 2 (~3 - -  B~) cos 291 + (1--  Bi*~) ch 2B1 cos 2(g3 -- g~) + 

+ [ / 2  Bi* (sh 2 (~3 ~ L) cos 2~ + ch 2~1 sin 2 (~3 ~ ~))]} ; (21) 

hi = K1-/K~+; h~ -= K~-/K~+. 

In the above A x is obtained from ~ by replacing 61 with 6tx =]/'w-7~x (l~ - x); A~. x is obtained from z30 i f  in A x we 

put K1. = 0, K~+ = 1, 6~ = 0, and replace  62 with 5~x = ] f w - ~  (12 - x); ZS~x is obtained from &0 if  we put K~_ = 0, 
K 2_=0, K~+= 1, K2+= 1, 52=0, 6~= 0, and replace 53 witho~x=]/~2 ~ (/8-x); 
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In this case A~x is obtained from A~ by 
Z~x is obtained from zX x by putting KI_ 
: - x). 

8+ = 81 -I" 82 4- 83; 8--I = 82 -J-- 83 -- 81; 8-- 2 = 81 "~- 83 -- ~2; 

8__ 3 = 81 "~- 82 -- 83; 

KI+ = K14-I; KI-=KI-- I; K2+=K2+1; K2-----Kg--I; 

KI = ]/XlCiVa/Xgc2 V~ ; Ks = V),2c2?~/),ac3y3 ; 

A. . A2. . 
= arc cos , = arc cos ' 

As. 
D3 = arc cos Va~3 ; ~ = Dl.[.=0; 

A x = ch 8~ cos 8 + - -  sh 8+ sin 8, + + hi (ch 87 ~ cos ~7 ~ - -  sh 87-' sin 87 ~) -4- 

4. h2hl (ch 87 2 cos 87 2 - -  sh 87 -2 sin 81 -2) + h= (ch 87 -a cos ~7 a - -  sh 87 -a sin 87 -a) + 

4 -  ] / - 2 B i *  ' "+ "+ (sh Ox cos Ox + hl sh 8F I cos 871 4- 

-4- hlh= sh Ox 2 COS 8x 2 -1- h 2 sh 87 -a cos 8Fa); 

A=. c h S + c o s ' *  x �9 ~x �9 8_ cos sh 4- = o+--shS+smo+4-hg(ch x 8 ~_- 8_x sin" o_)~* 

-I- ]/2 Bi* (sh 8$ cos 85 4- h= sh 85 cos 82); 

o+ = ~3 -4- %x; o _  = % - -  89x; 

A3, = ch 83, cos 88, - -  sh 88, sin 83, + V '2  Bi* sh 88. cos 8ax; 

A'. = K~+K2+ {[(1+ Bi*") ch 28+ - -  (1 - -  Bi*=) cos 28+ + 

4- I 2 2  Bi* (sh 28+ --  sin 28+)] d- [( 14- Bi .2) ch 281 - -  (1 - -  gi *s) cos 28_1 + 

-4- ] f 2  Bi* (sh 28_1 - - s in  28_1)] h~ 4- 

-+- [( 1 + Bi .2) ch 28_9 - -  ( 1 - -  Bi .9) cos 28_~ 4- 

,, , , -  2 2 -4- ] f 2 B i *  (sh 2o_ 2 - -  sin 2o_2)] hi h2 4- 

+ [ ( 1 +  B1 ~ )ch 2 ~ - 3 -  (1--  Bi .2) cos 2a_s + ] / 2 B i *  (sh 2o_  a sin 2o_a)1 h 2 + 

+ [(1 +.  Bi .2) ch 2 (~a 4- 88.) cos 28~ - -  (1 - -  Bi .2) ch 282 cos 2 (88 4- gl.) 4- 

4- V '2Bi*  (sh 2 (;a 4- 8~.) cos 28~ - -  ch 28~ sin 2 (8 a 4- 81.))] 2h~h2 4- 

4- [(1-4- Bi .2) ch 2 (~3 - -  81x) cos 28= - -  ( 1- -  Bi .2) ch 2 ~  cos 2 (88 - -  ~1.) + 

4- V 2  Bi* (sh 2 (8 a - -  8,.) cos 292 - -  ch 282 sin 2 (88 - -  ~.))]  2hlh.. -4- 

+ [(1 + Bi*=) ch 2(8z 4- 83) cos 28,~ - -  ( 1 - -  Bi'*~) ch 28~..cos 2(82 +.88) -t- 

+ V~2 Bi* (ch 2~, x sin 2 (~a + ~) - -  sh 2 (~a + 8~) cos 28,.)] 2h~ 4- 

+ [(1 + Bi .2) ch 28~ cos 2 (88 + 81.) - -  ( 1- -  Bi *~) ch 2 (88 + 8,~) cos 28~. 4- 

-}- I f 2  Bi* (ch 2 (8~. 4- 8~) sin 288 - -  sh 288 cos 2 (8~. -1- 82))] 2h., 4- 

+ [(1 + Bi .2) ch 28 a cos '2 ( ~  - -  8~) - -  ( 1 - -  Bi *~) ch 2 (89 - -  81.) cos 28 a + 

+ I f 2  Bi* (ch 2 (8~ - -  81.) sin 288 - -  sh 288 cos 2 (89 - -  ~ ) ) ]  2h~h= -4- 

4- [(1 4- Bi .2) ch 281. cos 2 (88 - -  8~) - -  ( 1 - -  Bi*) ch 2 (88 - -  8~.) cos 28~. -1- 

4- 1 / 2  Bi* (ch 281. sin 2 (~a - -  8~) - -  sh 2 (83 - -  8~) cos 28~)1 2 h~h2}. (22) 

putting K,- = 0, 61 = 0, K,+ = 1, and replacing 6~ with 6zx =V~--~z (lz - x); 
: 0, K~_ : 0, K~+ = i, K~. = I, 6~ : 0, 6~ : 0, and replacing 6 s with 6ax = 

From solutions (15), (16), and (17) we obtain the solution for a two-layer slab, if we put K I- = 0, Ki+ = 2, 

61 + 82 = 6 I. The solution has the form: 
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t l  (x,  ~) ----. tlcx -1- t,~A (x, to) cos (to~ - -  ? + ~x); (2~) 

G(x, ~) = Gxc + t,,,A2(x, to )cos (~  --  ~, + 13~). (24) 

For the heat fluxes we obtain the expressions: 

ql(x, ~) = Qlc+ ]/f)'lClVl ~ tmA (x, to)cos (t0, --  V + ~x + ~x) 1 / ~  ; (2a) 

q2(x, z) = O2c + V"~2cev2 ~ tmA2(x, to) cos(o,~ - -V + ~ex + ~x) V'A2x/A2x ; (26) 

, / A .  �9 A2( , [ ]',"'. Al(x, V 
Ao = [ ( 1 +  Bi*2) ch 2~+ + ( 1 - -  Bi*2) cos 2~§ + 

+ ] / 2  Bi* (sh 2g+ + sin 2g+)] + h 2 [(1 + Bi .2) ch 2g_ + ( 1-- Bi .2) cos 2 ;_  + 

+ V '2Bi*  (sh 2 ; _ +  sin 2L_)] + 2hi(1 + Bi*2) ch 2g2cos 2~  + 

+ ( 1--  Bi .2) ch 2~t cos 2~  + ~ 2  Bi* (sh 2 ~  cos 2~1 5- ch 2~  sin 2~)];  (27) 

hcx--to" +----~oR~ (t~--.t;)., t ~  = to + RI +RoR~X (tc - -  t;); 

�9 a2 = [(t + Bi .2) ch 2g+ - -  ( 1--  Bi*2) cos 2~§ + ] / 2  Bi* (sh 2g+ - -  sin 2g§ + 
+ h  2 [ (1+ Bi*2)ch 2 ~ _ - -  ( 1 - -  Bi*2)cos 2g_ + ] / 2  Bi* (sh 2g_ - -  sin 2~_)] - -  
- -2h  [(1 + Bi *~) ch 2;2 cos 2 ;~  - - (  1-- Bi .2) ch 291 x cos 2g~ + V 2 Bi* (sh 2 ~  ;< 
X cos 2 g ~ -  ch 2ga~sin 2g~)]; 

~ = Vo'/2a~ ( / l - X ) ;  ~+ = ~x + ~;  ~-  = ~ - ~ ;  

A x is obtained from Ao by replacing gl with ~lx.; 

A~x = ( 1 +  Bi*2)ch 2~ ,~+  ( 1 "  Bi*~)cos 2 ~  + 1 / 2  Bi* (sh 2 ~  + sin 2~2~); 
A2x = ( 1 -~- Bi .2) ch 2g~ - -  ( 1-- Bi .2) cos 2 g~x + ] / 2  Bi* (sh 292~ sin 2g~); 
Ke = ]/ ),1c~1/X2c2~; h = (Ke ---1)/Ke + 1 ) ;  ~ =  t / ~ - ~  (l~--  x); B i * =  

= a/1/~ c ~'~. 

Analysis of solutions. The reference value for calculating the heat transmission through an outside wall, according 
n 

to Soviet Construction Norms and Specifications (CNS) [9], is D = ~ Risi (thermal inertia). Ri is the thermal resist- 
i = l  

anee of the i-th layer, and s i is the coefficient of assimilation of heat. We shall use solutions (9) and (12) to determine s 
for a two-layer wall (second layer infinitely thick): 

s ( x ) =  q(x)max ," 
t (X)max 

s~ (x) = ]/k~ c~ Woo ({ 1 + 2h exp ( - -2 / ,  + 2x) V ~/2 al cos 2 (/1 - x) V-~/2 a~ + 

+ h2exp[(--4l~ + 4 x )  V~/2a~]  } {I - -2h  exp [(--2l~ +2x)X 

X all fios 2 (/1 - x )Vto /2  al + h2'exp [(--4/1 + 4x)]/~-~ ad}-~)v2; 

s2 (x) = V c2w  

It follows that, for finite layers (even for an infinite thickness of construction), the value of s does not coincide with that 
recommended by CNS [9]. Let us consider (1) in more detail. In [9] the recommended value for s when D > 1 is 
s = 1 /~ -w ' .  But 2l 1 ~/~7--~i = g ~ (/l/X1) x g ~  = g ~ D. For any x, expression (1) differs from V'kcTto, and coin- 
cides with it for 2(l 1 - x) ~ = (2K + 1)tr/2. When 2l 1 ~ = ~r/2, D -- 1.1, and consequently for this kind of 
layer [9] recommends s = V xic17[~~ At the boundary between the layers we have, from (1): 

1 + h  K~ 
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Thus, sz(/l) does not depend on the value of l 1, and at the boundary between the layers, for any thickness, if the ma-  
terials are the same, will be a constant determined by the material  properties. If we represent (1) graphically, we obtain 
the curves shown in the figure. Using solutions (23), (24), (25), and (26) to determine the value of s, we get: 

s, lx) 

Variation of s = qmax/tmax in a 

SI(X) = Cl V l  It) VA;/ Z , (28) 

layer with D ~ 1. 
value of ] / ~ w .  

We shall find the integral mean g(x) for three different materials in a layer with 26+ = 1/ '2- D = 7r/2, i . e . ,  D ~ 1.1: 

a) a natural stone wall, ] / k c y w  = 20.6, x = 0.11, Bi* = 0.36, s (x ) /Vkcyw = 0.4;  

b) abrick wall, 7/Xc)'w = 7.5, x = 0.7, Bi*= I, g ( x ) / ~  I; 

c) foam concrete, 7 = 400, i/-~w = I. 58, x = O. 6, Bi* = 4. 74, s(x)/i/~6-)w ~ 2.3. 

It follows from formulas (28) and (29) that s = i//-~'-Tw will be close to qmax/tmax for materials for which F XcTw 
is close to ct, 

(29) 

Let the second layer be of such a thickness that (D > 1) 2 ]/w 2- -~ i  (/2 - ll) > 
> ~r/2. This means that, using [9], we should take s = 1/kzczT~w. At the inside 
surface s = qmax/tmax = a,  and it increases or decreases up to the boundary be- 
tween the layers (if D ~ 1.1). Thus, the l fkdTw does not characterize the rela- 
tion qmax]tmax at any point in the layer, but if we take the integral mean value 
of s for a layer with D > 1. l ,  it may be several times greater or less than the 

The thermal inertia characteristic D is introduced to allow for unsteady nature of heat transfer. The outside design 
temperature is chosen according to the value of D (average for the coldest f ive-day period, or average for the coldest 24 
hours). For the same average temperature, however, the amplitudes may differ (temperature varies from -3~ to 3~ 
and from -10~ to 10~ during 24 hours, and in both cases the average temperature is zero). 

It follows from (23) to (26) that the temperature and heat flux oscillations at the inside surface (the half-period 
value of the flux is taken) depend on t m (amplitude of oscillations of outside air), 26+ = ~ D (thermal inertia), 26 i = 
= 1/2"- D i (thermal inertia of layer), and also on the order of the layers and the properties of the materials used. 

As an example, we shall consider the variable components of temperature and heat flux at the inside surface of a 
two-layer wall. 

From (24) and (26) we obtain 

& 2 v:ff 

q2 (&, ":)= 21/-2- 

K 
tm COS ( ~  --: y) ,  (30) 

( K + I )  1/&o 

K~ 
tm cos (~ox - -  q~). (31) 

Hence it follows that, for a given arrangement of materials (K does not change) and a givefi amplitude of the oscillations 
of the outside air (t m = const), the amplitude of the oscillations at the inside surface is determined by 1/-~" ( a  is con- 
sidered constant). 

A0 = [(1 q- Bi .2) ch 2~+ + ( 1 - -  Bi .2) cos 2;+ -4- I / 2  Bi* (sh 2g+ q- sin 2g+)] q-- 

q- 2 h [ ( l +  Bi .2) ch 2g~cos 2 ; 1 +  ( 1 - -  B i ,  2) ch 281 cos 282 - -  l / 2 B i *  (sh 2 ;  2 X 
X cos2 ; lq -ch  2~z sin 28~)] q-h~ 1 q- Bi .2) ch 2~_ q-  ( 1 - -  Bi 2) cos 28_ q- ] / 2  Bi* X 
X (sh 28_ q- sin 2 ; _ ) ] .  

The first bracket depends on 26+ = ~ D (thermal inertia of wall). The bracket preceded by 2h and h 2 on 251 = 
= ~ Dl and 252 = i/n2- D2 and on the relation between them. 

If we vary the thicknesses of the layers, keeping the 25+ of the wall constant, then the first bracket does not 
change, but the other two do. Therefore, the amplitude at the inside surface and the heat flux also change. 

Hence for wails with D < a, A o may be larger than for walls with D > a. And if a is a value that divides wails into 
classes in terms of massiveness, then, for the same R, the better of two walls in a thermal sense might be judged unfavor- 
able. 
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Let us examine three two-layer  walls a, b, and c (Table 1). 

T A B L E  1 

Parameters for determining losses in wails 

Parameter 

$ 

R 

D 

,y 

12.50 

1.25 

0.03 

O. 375 

2400 

First layer! second layer 

6.45 

0.50 

0,572 

3.69 

1000 

3.02 

0.22 

0.10 

O, 302 

800 

5,00 

0.40 

0,715 

3 575 

1200 

1,30 

0.11 

0,20 

0.26 

300 

6,45 

O. 50 

O. 592 

3.8184 

1600 

Following CNS, we shall determine the suitabil i ty of these walls for the following conditions, 

Average temperature during coldest  24 hours -23~ average temperature during coldest 5-day period -15~ For 

l ight structures R should not be less than Rtr = ( t l  -- %)nb/aAt0. For wall a, D = 3.95, R = 0. 878, Rtr = 0. 911; for wall b, 
D = 3.95, R = 0.905, Rtr = 1.002; for wall  c, D = 4.12,  R = 0. 825, Rtr = 0. 822. Therefore, according to CNS, only 
wall c is satisfactory for the given loca l i ty .  

Let us find the rat io of ampl i tude  of the oscil lations at  the inside surface to that at the outside surface, using (30) 
and (31). For a i t  is 0.058, for b - 0.022, and for c - 0.05.  

Thus, the construction with the greatest  thermal  resistance and the greatest inert ia  to variable thermal  effects is 
judged unsuitable, while the worst is recommended.  This leads in some cases to an unnecessary over-or  underest imating 
of the cost of mater ia ls  and the thickness of the wall.  For mater ia ls  with markedly  different characterist ics this discrep- 

ancy will  be even greater .  We present a table  of three- layer  and two-layer  wails ca lcula ted  in accordance with (14)-(19), 

The following quantities are given in Table 2: the thermal  resistance Rtota 1 = l l / X  1 + (l 2 - l l ) /X  2 + (l 3 - / 2 ) / X 3 +  l / a ;  
Dtotal  = 26+ = t / ' 2 -  D (D is the thermal  inert ia according to CNS); tmax/ t  m - the ratio of the ampli tudes at the inside 
and outside surfaces; Qunst/Qst - the ratio of the unsteady to the steady components of the heat  flux. In this case each 
line gives two results: the first is the ratio of the var iable  component during a ha l f -per iod  to the constant component of 
the flux through a brick wall for the same design temperatures;  and the second is the ratio of the variable component of 
the flux during a ha l f -per iod  to the steady component of the flux through the same wall .  The ratios are given as percent -  

ages, the factor tm/(t  i - to) is taken out and p laced  at the head of the table,  which also gives the ratio of the sum of the 

terms in (21), which take into account the order of the layers and the ratio of their D i = ~ (li - l i-1),  to the term 
n 

determined by D = 2 R~s~. 
,~= 1 

These calculat ions (last  column of Table  2) well  i l lustrate the fact that the quantity D, which in z~ determines the 

va lue  of the terms not containing h, is not character is t ic  of the thermal  inert ia  (massiveness of wall), since the numer i -  

cal  value of D does not determine the value of the heat  flux and the ampli tude at the inside surface in the presence of 

var iable  thermal  effects.  

The oscillations of the temperature and heat  flux under changing thermal  conditions are 1.5 t imes less for wall  2 
than for wall  1. Therefore the lat ter  has greater thermal  inertia,  although it  has a smal ler  D than the former. 

It follows from the foregoing that the heat  transfer in outside wails must be ca lcu la ted  on the basis of more accu-  
rate formulas than those recommended in CNS. The calculat ions may  be done direct ly from (14)-(19) or (23)-(26). The 
functions entering into the formulas have been tabulated,  and nomograms may  also be constructed. 

Method o.f constructing nomograms. The first four brackets in (21) and the first two in (27) have different indices, 
so that one nomogram is required for these six terms. Another nomogram is required for the last six brackets in (21) and 

the last bracket  in (27). 

Having established the range of variation of the quantities occurring in (27) and (21) 51 = 1/'~---]~1 lx, 5 z = 1,/-~-/-~2 
(12 - ll), 6+ = 61 + 62, 6_ = 62 - 51, h = (K - 1)/(K + 1), Bi* = a / ~ ,  let  us construct in the coordinate system 
Bi*, 6 the family  of lines 7 = const, where 

Y = Bi*=( ch 2 ;  - - c o s  2g) q- Bi* (sh 2g -t- s in 2~) 1/- f f -k  (ch 2~ -k cos 2g). 

116 



T
A

B
L

E
 

2 

C
al

cu
la

ti
o

n
 o

f 
w

al
ls

 i
n 

ac
co

rd
an

ce
 w

it
h 

fo
rm

ul
as

 (
14

) 
to

 (
19

) 

W
al

l 
1s

t 

L
im

e 
pl

as
te

r 
20

 m
m

 

L
im

e 
p

la
st

er
 

20
 m

m
 

R
ei

nf
or

ce
d 

co
n

cr
et

e 

40
 m

m
 

R
ei

nf
or

ce
d 

co
n

cr
et

e 
25

 m
m

 

l.
&

m
e 

p
ia

st
er

 
20

 m
m

 

L
im

e 

pl
as

te
r 

20
 m

m
 

L
ir

a e
 

pl
as

te
r 

20
 m

m
 

M
at

er
ia

l 
an

d 
th

ic
kn

es
s 

of
 l

ay
er

 

2r
id

 

B
ri

ck
 

51
0 

m
m

 

F
ib

ro
li

te
 

26
0 

m
m

 

F
oa

m
. 

co
n

cr
et

e 
20

0 
m

m
 

M
in

er
al

 w
oo

l 
15

0 
m

m
 

S
la

g 
co

n
cr

et
e 

88
0 

m
m

 

E
x

p
an

d
ed

-c
la

y
 

co
n

cr
et

e 
�9

 40
0 

m
m

 

L
ig

ht
w

ei
gh

t 
t 

li
m

e 
co

n
cr

et
e 

28
0 

m
m

 

3r
d 

P
la

st
er

 o
n 

in
si

de
 f

ac
e 

20
 m

m
 

P
la

st
er

 o
n 

in
si

de
 f

ac
e 

20
 m

m
 

R
ei

nf
or

ce
d 

co
n

cr
et

e 
20

 m
m

 

R
ei

nf
or

ce
d 

co
n

cr
et

e 
20

 m
m

 

J 
I 

f 
tm

ax
 

Q
un

st
 t

i-
to

 
v_

~A
D 

10
0%

 
R

t~
 

D
t~

 
tm

" 
[.

Q
st

 
tm

 
I 

o 

I 
0.

92
2 

6.
20

 
0.

01
5 

6.
6 

3 

f 
6.6

 
__ 

~.7
~ 

~.o
o t

 o
.oo

~ 
,~.~

1 
~ 

I ~.~
 

~.~
o 

o.o
~o 

] 
l~.

~ 
I 

~ 
32

 

6,
 

4.
54

 
o.

oa
s 

16
.7

 
35

 
. 

18
.2 

. 

/o 6o
   o r

oo 
41 

0,
96

0 
a,

70
 

0,
05

6 
24

,6
 

75
 

t 
25

.~ 
j 

--
a 



We find the 7 corresponding to the Bi* and 5 calculated for the construction. To calculate the first four brackets of 
(21), four readings must be taken at the same Bi*. The sum of the four brackets for a three-layer wall is: 

and for a two-layer wall (27): 

2 
A (7) = Y1 + h~ y~ + h~h~ Ya + h~ ?4 ,  

A ( ~ )  = 71 n u h ~ ' ~  �9 

For the last six brackets of (21), three families of lines are constructed in the coordinate system 51, 52: 

= ch ~1 cos a2 - -  ch ~ cos ~1 = const ,  

---- ) / 2 - ( s h  ~1 cos ~2 + ch ~ sin ~1) = const ,  

0) = ch ~1 cos ~ + ch as cos ~1 = c o n s t  

For convenience each family can be represented in a separate plane. 

The numerical value of the bracket B = ~ + Bi*c~ + Bi'28. The remaining brackets are calculated in a similar way. 
n 

Finally, it should be noted that the quantity D ---- s Ris~, assumed to be characteristic of the thermal inertia, is 

i = 1  

actually not. Therefore choosing design temperatures (to determine the thermal resistance) on the basis of D is incorrect. 
The existing method of choosing design temperatures leads either to wastage of material or to unsatisfactory construction. 
The proposed method of calculation permits the selection of materials and thicknesses in accordance with the known re- 
quirements made on the wall, and the determination of the nonuniformity of heat losses under variable thermal condi- 
tions, thus allowing a more rational choice of the power and refrigeration capacity of the air-conditioning plant. 
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