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The problem of heat transmission in multi-layer walls is analyzed. It is shown that the officially recom-
mended method requires improvement and new design formulas are proposed.

Building materials are capillary-porous bodies containing moisture in the form of liquid, vapor, and, atsub-zero
temperatutes, ice. It has been shown [1, 5] that the problem of heat transmission in buildings is closely related to ques-
tions of heat and mass transfer. Therefore, to find the heat transmission through outside walls, it is necessary to solve the
complete heat and mass transfer equations:
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Here we shall neglect heat transfer due to filtration of vapor-gas mixture. It has been shown [4] that this assumption is
justified for K < 0.5. In the positive temperature range t > 0°C the liquid source I (I = —1,) is conditioned by condensa-
tion of vapor. According to Posnov's calculations, under normal conditions the mass of moist air in the capillaries is 10°%
of the mass of liquid corresponding to equilibrium moisture content. Then it is accurate enough to make the specific
mass content equal to the specific mass content of liquid (u = uy). From Eq. (1) we obtain

e i D 25

where ¢ is the resistance coefficient for internal diffusion of vapor, and D the diffusion coefficient of vapor in air, For a
building material in the moist state, the partial pressure of vapor (py) in the capillaries is equal to the saturation pressure
ps and is a function of temperature, Then :

]1=—-spD_M_. &Vzt‘ (4)
M oT

Assuming that the thermophysical characteristics depend very little on the coordinates, we may write (2) in the form

ot 0%
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where @gq is the equivalent thermal diffusivity:

RT dp 1
Qeg=|N+reD -5 =, 6
eq ( + 12 M, oT ) o (6)

It is shown in [4, 5] that (5) may be used to calculate the heat ransmission through outside walls, when Geq, calcir
lated from (6), is taken as a. In the presence of a considerable moisture gradient over the thickness of the wall, itshould
be divided into layers, and the mean characteristics of each layer used.

We shall employ (8) to analyze heat transmission through a multi-layer wall. Heat transmission through an outside
wall is usually unsteady. In the first approximation we shall assume that the temperature of the outside air (outside sur-
face) varies according to a harmonic law.

Mathematically, the problem of an n-layer wall is described by the following system of equations:
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with appropriate boundary and initial conditions. In [6, 7] Eqs. (7) have been solved for a two-layer wall, and in [8] for
the n-layer case.

In this paper we shall examine Eqs. (11) and (12) from [6}, and (5), (6), and (7) from [8].
We shall write expressions for the temperatures and heat fluxes in two-layer and three-layer systems.

Two-layer wall. An outside layer of thickness Z; is in perfect thermal contact with a second layer of considerably
greater thickness (I, > I;); we may assume I~ . The initial temperature is constant (or equal to zero). Starting from
time 7 = 0, the temperature of the outside surface changes according to an harmonic law, (0, T) = tyy sin wr; (e, T) = tee
The solution of (7) has the form [61:

— - s PR
M. =exp(—V /2 a; x) A sin(ot —y 0/2 a; x—p +B,);
t A, (9
‘tg‘(‘{,;);tc =exp[— 1/‘”/2 a; l; — V"D/Q as(x — 1)1 X
X llf—l sinfot — Vo/2a; 1; — V w/2ay (x — 1) — Bl;
A(l)/z 1 ¢ 2 1 s (10)
A, =1—2hexp[—2(l; — x) V o/2a] cos 2(l,— X)) o/2a,+
+ Rexp[— 4 (4 —x) V o/2ay);
A0 = Axlx:o ’
where
h=(1—K)/(1+ Kg); Ke = (cimi/hg 0272)
— 2y — — 3
B, = arc cos l—hexp[—2(l; —x ]/m{/Qal] cos 2(l, — x) V o2a ; (11
Ax 2
B == ﬁxlx=0 .

For the heat fluxes we obtain
G (x, 7y = (Vhieorao {14 2hexp [(—20,-+2x) V 0/2a;] cos 2 (l— x) X
XV 0j2a; + R exp[(—4ly +4x) V 0/2a1]} {1—2hexp (— 2l X
XV l2;) cos 20, V ofda; +h exp (— 4ly Y wiZay)) )X
X exp(— Vo722, %) sin (o5 — V628 £ — B — By -+ w/4); (12)
a2 (%, B = Vhoea1a0 expl— V02, Iy — V 0285 (x — L)(1—h) X
X [1—2hexp(—2L V v/2a,) cos 20, V ©/2a, + h?exp(—4l, X
X VoRa)y=s sin(wx — V o2a; , — V028, (x — 1) — B + /4). (13)

Three-layer wall, The temperature at the outside surface varies according to an harmonic law 14(0,7) = i+
+ ty cos wr, and heat transfer takes place at the inside surface according to Newton's law, Ag(dta/dx) = —ofty — tc)]x:ls.
The temperature of the inside air remains constant. The initial temperature is taken as the temperature established in
the wall when the temperature of the outside surface tg = t; + ty, and heat transfer at the inside surface is governed by
Newton's law. The solution of (7) has the form [8]:

t(x, ©)=t1 + 1,4 (x, 0)cos(ot — 7 -+ Buy); (14)
t2 (x, T) = tzcx +2K1th2 ()C, 0.)) €os ((DT —T + B2x); (15)
zL3 (x, T) = t3cx +4K1K2tm"43 ()C, (D) Cos ((1)’! - T + ﬁsx)' (16)
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For the heat fluxes we have

: A
q1 (%, ©) = Qi — lm4; (%, ®)cos (ot —vy + Pie -+ Bx) ‘/)q €1 Y10 *E ; an

qs (x, T) = Q2c - 2I<1thZ (x’ (l)) Cos ((!J‘t - 'Y + ﬁzx ‘!" ﬁ'Zx) X

X “/)\2 C2Ya® AA2x 5 (18)
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g3 (x, ©) = Qs — 4K1K2tm-43 (%, ®)cos(wt— 7 - B + [33'):) X

X kg Cy Va0 i&c , (19
3x

where

Al (x’ (1)) = (Ax/AO)‘/z; AZ(x- (!)) = (AZ\f/AO)!/z; A3 (x) (D) = (AEx/AO)l/Z;

. . R W, 4 Ri+R :
tlcx tO + RO (tc t()) s t2cx tO + , ( c O) (20)
. , l l,—1 Iy —1 I
t3cx - to + Rl -+ Rz -+ R3x (tc - to‘); Rg — Al + 2 - 1 + 3 - 2 + :
0 1 Ao 3 &

Ry = /M Ry = (x —I)hg; Ray = (x—l3)/s.

A, = K3, K3, (14 Bi*%)ch 23, + (1— Bi*?) cos 25, +
+ V' 2Bi** (sh 28, + sin 23,) + A} [(1+ Bi*2?) ch 25_; + (1— Bi*2) cos 25_,
+ V' 2Bi* (sh 25_, + sin 28,)] + AT A3 [(1 4 Bi*?)ch 25_, +
-+ (1—Bi*?)cos 28_5 4 1/ 2 Bi* (sh 23_, + sin 28_,)] +
+ B3[(14 Bi*?) ch 25_, ++ (1— Bi*?) cos 2_, +
+ V2 Bi# (sh 25_5 + sin 23_3)] + 2hyh, [(1+ Bi#?) ch 2(34 - 3,) cos 23, -+
+ (1—Bi*#) ch 25, cos (3 4 83) + 1T Bi* (sh 2 (3, - 3,) cos 25, +-
-+ ch 235 sin 2 (35 + 31))] + 2hh, [(1+ Bi*2)ch 2 (3, — 3,) cos 25, -+
+ (1— Bi*2)ch 23, cos (3; —3,) + V2 Bi* X
X (sh 2 (83 —8;) cos 28, 4 ch 28, sin 2 (35 — 3;))] +
+ 2k, [(14 Bi*?) ch 2 (35 + 35) cos 28, + (1— Bi*2) ch 23; cos 2 (3 + 3,) +
+ V2 Bi* (sh 2 (35 4 3,) cos 28; + ch 23, sin 2 (35 - 35))] +
~+ 2h, [(14 Bi*?) ch 2305 2 (35 4 3,) + (1— Bi*2) ch 2 (3, -+ 3y) cos 284 -+
+ V2 Bi* (ch 2 (35 - 3,) sin 235 + sh 23, c0s'2 (3, + b,))] -
+ 2hih, [(1+ Bi¥2) ch 28 cos 2 (3, — dy) - (1— Bi*2)ch 2 (3, — 3,) cos 285 +-
+ V2 Bi* (sh 235c08 2 (3, — 8;) + ch 2 (3, — 3;) sin 28,)] +
+ 2h3h; [(1+4 Bi**)ch 2 (3 — 3,) cos 28, + (1— Bi*?) ch 25, cos 2 (35 — 3) +
+ V2 Bi* (sh 2(3, — 8,) cos 23, + ch 28, sin 2 (35 — 3,)]) ; (21)
=Vo2abL; 3=V 028, (lb—h); %=V o2a (l;— )
hy = Ky_[Ky,; hy =Ko /Ky, . |

In the above 4, is obtained from & by replacing 6y with &y =Vw/2a1 (I3 = %)3. Dgx is obtained from 2y if in Ag we
put K;. = 0, Kyt = 1, 85 = 0, and replace &, with 8py =Vw72a2 (I3 — x); Dgx is obtained from 2y if we put Ky =0,
Kp-=0, Ky = 1, Koy = 1, 83= 0, &3 = 0, and replace 83 with ogy =V/X/2a5 (I —x)
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B,=0 43 +8; 3y =08y + 83— 3y; Sy =203, + 35 — 3y;
8_g = 8; 4 0y — 8;
Kiy =K+ 1 Kio =K —1; Ko, =Ko+ 15 Ko =K, —1;
K, =V7\1€1Y1/)\2 C3 Ve ; Ko= V)\zczYz/)\s C3Y3
B1. = arccos Aﬁ_ ; Bg = arccos Afﬂ‘_ :

‘/Ax VAZx

A
Bs = arc cos V3x 5 1= Buadx=o;
x3

A, = chd} cosd) — shd} sind] + hy(ch 8, cos 87" — sh ;! sin 871 4
+ hghy (ch 357 cos 377 — sh 352 sin 377%) 4 Ay (ch 85 cos 3;° — sh 37 sin 8;°%) +-
+ V2 Bi* (sh 3y cos 87 + hyshd; cosay" 4
+ hihysh 377 cos 87° + hysh37 cos 357°);
Ay, = ch ¥ cos 3% — shdl sindy + Ay (ch 3’ cosd” — shd¥ sind™) +
+1/2 Bi* (sh 3% cos 8% + hy sh 8% cos 3%);
8% == 8y + Bgy; 85 = 85— By,
As, = chd,, cos 85, — sh d, sin 8y, + 12 Bi* sh 8, cos 8;;
Ar =K3, K3, {I(1+ Bi*®ch 25, — (1— Bi*?)cos 23, -+
+ 12 Bi* (sh 23, — sin 23,)] + [( 1+ Bi*?) ch 28; — (1— Bi*?) cos 23_, +
+ 12 Bi* (sh 20_; —sin 25_,)] 4 +
+ [(14 Bi*?)ch 25_, — (1 — Bi*2)cos 23_, +
+ V' 2Bi* (sh 25—, — sin 28__y)] K3 15 +
+ [(14 Bi*2)ch 28_y — (1— Bi*2) cos 28_5 + }/ 2 Bi* (sh 28_, — sin 23_,)] A} +
+ [(1+ Bi*?)ch 2 (3; + 8;,) cos 28, — (1 — Bi*?) ch 28, cos 2 (3; + &,,) +
+ V'2Bi* (sh 2(35 + 85) cos 23, — ch 23, sin 2 (8; + 81,))] 2yt +
+ [(1+ Bi*?)ch 2 (85 — 8y,) cos 285 — (1— Bi*2) ch 23,cos 2 (85 — 34;) -+
+1/2 Bi* (sh 2 (3; — 8,) cos 28, — ch 28, sin 2 (3; — 3,,))] 2hhs +
A [(1+4 Bi¥?) ch 2 (3, -+ 3;) cos 25, — (1— Bi*2) ch 25,, cos 2 (85 + 3) +
+ VT Bi* (ch 25y, sin 2(35 -+ 3) — sh 2(3; - 3)cos 28,)] 20y +
+ [(14 Bi*2) ch 28, cos 2 (3 -+ 3y,) — (1— Bi*2) ch 2 (3, + 8,,) cos 25, +
+ 12 Bi# (ch 2 (3, + 8,) sin 235 — sh 23;cos 2 (3, + 32))] 24, +
-+ [(1+ Bi*2?)ch 23; cos 2 (3, -— 8;,) — (1— Bi*?) ch 2 (3, — 3,,) cos 283 +
+ V2 Bi* (ch 2 (3, — 3y,) sin 28; — sh 23, cos 2 (8, — 8y,))] 243A, +
+ [(1+ Bi*2) ch 28, cos 2 (35 — 3) — (1— Bi*)ch 2 (3; — 3,) cos 23, -+
+ V2 Bi* (ch 23, sin 2 (35 — 3,) — sh 2(8; — 8,) cos 28,,)] 2 Aufi3). (22)

In this case Ay is obtained from Ay by putting Ky- = 0, 63 = 0, Ky, = 1, and replacing 8, with 85x =Vw/2a, (I, — x);
Ogy is obtained from £y by putting Ky_ =0, K5 = 0, Kyp = 1, Ky =1, 6;= 0, 6= 0, and replacing 63 with &gy =
=]/w;‘2a3 (l3 - X)n

From solutions (15), (16), and (17) we obtain the solution for a two-layer slab, if we put K;. = 0, Ky = 2,
81 + 89 = §3. The solution has the form:
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tl (x, T) = tlcx + th (x’ m) cos ((!)'C —Y + B,\); (23)
to(x, ©) =ty + 1 As(x, w)cos(wt — 7y + Ba). (24)

For the heat fluxes we obtain the expressions:

q1 (x: T’) = Qlc+ V)\l aYw th ()C, (.0) Cos (U.)’C s + px "l" ﬁ:\c) VAJ’C"/Ax ) (25)

Go (%, 7) = Qo + V7\2 Co Yoo tpAs(x, w)cos (vt —y -+ Bo, + ﬁ;x) VA;x/K;x ; (26)

[ Ao, e
A(x, 0) = l/___ 4, (x, o) m ( A20) ;

Ay = [(14 Bi#*) ch 25, + (1— Bi*%) cos 23, +
+ VT Bi* (sh 25, + sin 28,)] + A2 [(1 + Bi*?)ch 25_ + (1— Bi*?)cos 25_ +
+ V2 Bi* (sh 25_ + sin 2_)] + 2h[(1+ Bi*2)ch 23,cos 23; 4
+ (1—Bi*¥)ch 231 cos 2, + VT Bi* (sh 28, cos 28, + ch 25, sin 25,)]; 2

e = fh + 02 L (to )i =y RlZR“ (t. —17);

0 0

A, =[(1+ Bi*?)ch 25, — (l—~ Bi*2) cos 23, + /2 Bi* (sh 23, — sin 28,)} -+
+ k2 [(1 + Bi*?)ch 25_ — (1— Bi*?)cos 20_. + 12 Bi* (sh 28_. — sin 23_)] —
—2h (14 Bi*?*)ch 202cos 23, — (1— Bi*?)ch 23,,cos 28, 4 ]/2 Bi* (sh 28, X
X cos 28;, —ch 28;, sin 202)],

b= V01201 (I, —x); 3, = By 4 By B = 3y — By,
A, is obtained from A, by replacing &; with 8, ;
As, = (14 Bi*?) ch 285, 4 (1— Bi*2?)cos 285, + V2 Bi* (sh 28,, + sin 28,,);
Agy = (14 Bi*2) ch 28,, — (1— Bi*2)cos 2 35, + /2 Bi* (sh 23,, — sin 23,,);
Ke=V havihecaYy b= K —1)/Ke +1); 3y, V“’/2a2(lz —x); Bi*=
=a/) hcyo.

Analysis of solutions. The reference value for calculating the heat transmission through an outside wall, according
n

to Soviet Construction Norms and Specifications (CNS) [9], is D = 2 R;s; (thermal inertia). Rj is the thermal resist-
=1

ance of the i-th layer, and s; is the coefficient of assimilation of heat, We shall use solutions (9) and (12) to determine s
for a two-layer wall (second layer infinitely thick):

— Q(x)max .
’ (X) Z((x)max '
51(0) =V Ao yio ({14 2hexp(—2l; -+2x)V o/2arcos 2 (I, — x) V o2 a; -+
+ h2exp[(—4l;, +4x) Vo/2a4]} {1 —2hexp[(—2, +2x)X

X Vol2a]cos2 (lh — x) V o2 a5 + he'exp [(—al; 440V o2 al) 1)
x) = Vg C2Y20 .

It follows that, for finite layers (even for an infinite thickness of construction), the value of s does not coincide with that
recommended by CNS [9]). lLet us consider (1) in more detail. In [9] the recommended value for s when D & 1 is

= ‘/m But 21y \/w/2dy = V2 (1y/N) VAcYw =}/ 2 D. For any x, expression (1) differs from }/ Acyw, and coin-
cides with it for 2, — x) )/ w/2a; = (2K + 1)n/2. When 2I; VW—QEI =7/2, D = 1.1, and consequently for this kind of
layer [9] recommends s = m At the boundary between the layers we have, from (1):

si(ly) = Viie Y10 -

h — ]
= MC —_—
h Vl 1'V1<DK

&
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Thus, sy(Z;) does not depend on the value of I;, and at the boundary between the layers, for any thickness, if the ma-
terials are the same, will be a constant determined by the material properties. If we represent (1) graphically, we obtain
the curves shown in the figure. Using solutions (23), (24), (25), and (26) to determine the value of s, we get:

5/x) s:(¥) = Vi e vw V AA,, (28)
| — S
h>0 | AT w $2(x) = ¥ kg €y Vo0 VA?xA2x . (29)
hep I Let the second layer be of such a thickness that (D > 1) 2 1/w72a1 (3 = 1>
. VZwy/a! >n/2. This means that, using [9], we should take s = V' AgCaYaw. At the inside
surface s = qpax/tmax = @, and it increases or decreases up to the boundary be-
Vow/al=11 | tween the layers (if D = 1, 1). Thus, the 1/}\070.) does not characterize the rela-

tion qmax/tmax at any point in the layer, but if we take the integral mean value
of s for a layer with D > 1.1, it may be several times greater or less than the
value of 4/ Acyw.

Variation of s = gy ax/tmax in a
layer with D= 1,
We shall find the integral mean S(x) for three different materials in a layer with 26, = 1/—?— D =%/2, i.e., D~ 1.1
a) a natural stone wall, VW = 20,6, x = 0,11, Bi*= 0,36, s(x)/)/Acyw = 0.4;
b) abrick wall, Y Acyw =T.5, x=0.7, Bi*= 1, 5(x)/ Vicyw ~ 1;
¢) foam concrete, y = 400, 3/ Acyw = 1.58, x = 0.6, Bi*= 4,74, s(x)/ y/Aeyw = 2,3,

It follows from formulas (28) and (29) that s = VY Acyw will be close t0 qmax/tmax for materials for which 3 Acyw
is close to .

The thermal inertia characteristic D is introduced to allow for unsteady nature of heat transfer, The outside design
temperature is chosen according to the value of D (average for the coldest five-day period, or average for the coldest 24
hours). For the same average temperature, however, the amplitudes may differ (temperature varies from —3°C to 8°C,
and from —~10°C to 10°C during 24 hours, and in both cases the average temperature is zero). '

It follows from (283) to (26) that the temperatire and heat flux oscillations at the inside surface (the half-period
valu_e_of the flux is taken) depend on ty, (amplitude of cscillations of outside air), 254 = 7 2 D (thermal inertia), 25; =
= 1/ 2 Dj (thermal inertia of layer), and also on the order of the layers and the properties of the materials used.

As an example, we shall consider the variable components of temperature and heat flux at the inside surface of a
two-layer wall,

From (24) and (26) we obtain

K

taly, 7) =2V 2 ————— ty cos(0r —Y),
2(la, =2y TENTS (30)
— Ka
l, =2 /2 B ——— tm — ). 31
Gz (la, =) 1% K+1) /5 cos (0t —¢) (31)

Hence it follows that, for a given arrangement of materials (K does not change) and a given amplitude of the oscillations
of the outside air (tyy = const), the amplitude of the oscillations at the inside surface is determined by V Ly (o is con-
sidered constant).

Ao = [(14 Bi*?)ch 28, 4 (1— Bi*2)cos 23, + 1/ 2 Bi* (sh 23, - sin 28,)] +
4 2h[(1+ Bi*2) ch 23, cos 28, + (1— Bi*?) ch 23; cos 28, — /2 Bi* (sh 23, X
X c0s28;+ch 28, sin 28,)]+A2[(1+Bi*?)ch 26_ + (1— Bi®)cos 25_ + /2 Bitx
X (sh 28_ + sin 23_)]. .

The first bracket depends on 26, =7/ 2 D (thermal inertia of wall). The bracket preceded by 2h and h?on 25, =
= 2 Dyand 26, = 1/7 D, and on the relation between them.

If we vary the thicknesses of the layers, keeping the 26, of the wall constant, then the first bracket does not
change, but the other two do, Therefore, the amplitude at the inside surface and the heat flux also change.

Hence for walls with D < a, &y may be larger than for walls with D > a. And if ¢ is a value that divides walls into
classes in terms of massiveness, then, for the same R, the better of two walls in a thermal sense might be judged unfavor-

able,
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Let us examine three two-layer walls a, b, and c (Table 1).
TABLE 1

Parameters for determining losses in walls

First layer Second layer
Parameter, :

a | b I c a | b ¢
S 12.50 6.45 3.02 5,00 1,30 6,45
A 1.25 0.50 0.22 0.40 0.11 0.50
R 0.03 0.572 0.10 0,715 0,20 0.592
D 0.375 3.69 0,302 3.575 0.26 3.8184
v 2400 1000 800 1200 300 1600

Following CNS, we shall determine the suitability of these walls for the following conditions.

Average temperature during coldest 24 hours —28°C; average temperature during coldest 5-day period -15°C. For
light structures R should not be less than Ry, = (13 — tp)nb/oAty, For wall a, D = 38,95, R = 0,878, R = 0, 911; for wall b,
D= 3,95, R = 0,905, Ry = 1,002; for wall ¢, D = 4.12, R = 0,825, Ry = 0,822, Therefore, according to CNS, only
wall c is satisfactory for the given locality.

Let us find the ratio of amplitude of the oscillations at the inside surface to that at the outside surface, using (30)
and (31). For a. it is 0,058, for b — 0,022, and for ¢ — 0,05,

Thus, the construction with the greatest thermal resistance and the greatest inertia to variable thermal effects is
judged unsuitable, while the worst is recommended. This leads in some cases to an unnecessary over-or underestimating
of the cost of materials and the thickness of the wall, For materials with markedly different characteristics this discrep-
ancy will be even greater., We present a table of three-layer and two-layer walls calculated in accordance with (14)-(19).

The following quantities are given in Table 2 the thermal resistance Ryopal = li/Ay + (I = I/ A + (I3 — L)/ Mg+ 1/0t3
Diotal = 26+ =)/ 2 D (D is the thermal inertia according to CNS); tmax/tm — the ratio of the amplitudes at the inside
and outside surfaces; Qupg/ Qg¢ — the ratio of the unsteady to the steady components of the heat flux. In this case each
line gives two results: the first is the ratio of the variable component during a half-period to the constant component of
the flux through a brick wall for the same design temperatures; and the second is the ratio of the variable component of
the flux during a half-period to the steady component of the flux through the same wall. The ratios are given as percent-
ages, the factor tm/(ti — tp) is taken out and placed at the head of the table, which also gives the ratio of the sum of the
terms in (21), which tafe into account the order of the layers and the ratio of their D; =/ w72ai & - Zi— Py to the term

determined by D = 2 R;s; .
i=1
These calculations (last column of Table 2) well illustrate the fact that the quantity D, which in 4, determines the
value of the terms not containing h, is not characteristic of the thermal inertia (massiveness of wall), since the numeri-
cal value of D does not determine the value of the heat flux and the amplitude at the inside surface in the presence of
variable thermal effects,

The oscillations of the temperature and heat flux under changing thermal conditions are 1.5 times less for wall 2
than for wail 1. Therefore the latter has greater thermal inertia, although it has a smaller D than the former.

It follows from the foregoing that the heat transfer in outside walls must be calculated on the basis of more accu-
rate formulas than those recommended in CNS. The calculations may be done directly from (14)-(19) or (23)-(26). The
functions entering into the formulas have been tabulated, and nomograms may also be constructed.

Method of constructing nomograms. The first four brackets in (21) and the first two in (27) have different indices,
so that one nomogram is required for these six terms, Another nomogram is required for the last six brackets in (21) and
the last bracket in (27).

Having established the range of variation of the quantities occurring in (27) and (21) 8; = y/wf2ay Iy, 3=/ w/2a,
(I —=1y), 64 =061+ 08y 6-.=08, =63, h=(K —IAK+ 1), Bi* = ot/ )/ Nyc27,w, let us construct in the coordinate system
Bi¥, & the family of lines y = const, where )

Y = Bi*2(ch 23 — cos 23) + Bi* (sh 2 + sin 28) /2 - (ch 28 4 cos 23).
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We find the y corresponding to the Bi* and 6 calculated for the construction. To calculate the first four brackets of
(21), four readings must be taken at the same Bi®, The sum of the four brackets for a three-layer wall is:

2 2,2 2
A)=vi+ M vo+hihavs +hiy,,
and for a two-layer wall (27):
A(Y) = V14 HY2.
For the last six brackets of (21), three families of lines are constructed in the coordinate system &y, 8y
B =chd;cosd, — chidycosd; = const,
a==1/2 (sh 8 cos 8, + ch 8,5in3;) = const,
® == ch 8; cos 8, + chd;cos d; = const.
For.convenience each family can be represenfed in a separate plane.

The numerical value of the bracket B = w + Bi*o + Bi*)8. The remaining brackets are calculated in a similar way.

n
Finally, it should be noted that the quantity D = Z R;s; » assumed to be characteristic of the thermal inertia, is
i=1
actually not. Therefore choosing design temperatures (to determine the thermal resistance) on the basis of D is incorrect.
The existing method of choosing design temperatures leads either to wastage of material or to unsatisfactory construction.
The proposed method of calculation permits the selection of materials and thicknesses in accordance with the known re-
quirements made on the wall, and the determination of the nonuniformity of heat losses under variable thermal condi-
tions, thus allowing a more rational choice of the power and refrigeration capacity of the air-conditioning plant.
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